skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taylor, Katherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to nucleic acid's programmability, it is possible to realize DNA structures with computing functions, and thus a new generation of molecular computers is evolving to solve biological and medical problems. Pioneered by Milan Stojanovic, Boolean DNA logic gates created the foundation for the development of DNA computers. Similar to electronic computers, the field is evolving towards integrating DNA logic gates and circuits by positioning them on substrates to increase circuit density and minimize gate distance and undesired crosstalk. In this minireview, we summarize recent developments in the integration of DNA logic gates into circuits localized on DNA substrates. This approach of all‐DNA integrated circuits (DNA ICs) offers the advantages of biocompatibility, increased circuit response, increased circuit density, reduced unit concentration, facilitated circuit isolation, and facilitated cell uptake. DNA ICs can face similar challenges as their equivalent circuits operating in bulk solution (bulk circuits), and new physical challenges inherent in spatial localization. We discuss possible avenues to overcome these obstacles. 
    more » « less
  2. The evolution of pest resistance to management tools reduces productivity and results in economic losses in agricultural systems. To slow its emergence and spread, monitoring and prevention practices are implemented in resistance management programs. Recent work suggests that genomic approaches can identify signs of emerging resistance to aid in resistance management. Here, we empirically examined the sensitivity of genomic monitoring for resistance management in transgenic Bt crops, a globally important agricultural innovation. Whole genome resequencing of wild North AmericanHelicoverpa zeacollected from non-expressing refuge and plants expressing Cry1Ab confirmed that resistance-associated signatures of selection were detectable after a single generation of exposure. Upon demonstrating its sensitivity, we applied genomic monitoring to wildH. zeathat survived Vip3A exposure resulting from cross-pollination of refuge plants in seed-blended plots. Refuge seed interplanted with transgenic seed exposedH. zeato sublethal doses of Vip3A protein in corn ears and was associated with allele frequency divergence across the genome. Some of the greatest allele frequency divergence occurred in genomic regions adjacent to a previously described candidate gene for Vip3A resistance. Our work highlights the power of genomic monitoring to sensitively detect heritable changes associated with field exposure to Bt toxins and suggests that seed-blended refuge will likely hasten the evolution of resistance to Vip3A in lepidopteran pests. 
    more » « less
  3. Abstract Plastic liners are sometimes used with soil samplers in order to collect and store intact soil cores. Gaps at the soil–wall interface caused by the flexibility of plastic liners can result in wall flow, preventing accurate fluid flux density measurements. A subsampling method was developed to overcome problems with wall flow from soil samples collected with plastic liners in order to measure air permeability (ka) and saturated hydraulic conductivity (Ksat) on the intact cores. Subsamples were obtained after first immobilizing the soil within plastic liners by injecting expanding foam into the gaps between the soil and the liners. Once the soil was fixed in place, the soil samples were cut to the desired length, and sharpened metal rings were inserted into the original soil sample with a vise. With the metal ring at the desired depth, the subsample was removed from the original soil sample by cutting the liner and removing excess soil from the ends of the rings. Initial attempts to measurekaandKsaton samples within the original liners led to unrealistically high values because significant wall flow occurred. However, after implementing the improved subsampling approach, the measuredkaandKsatof the subsamples were within the range of expected values based on the literature. The subsampling method effectively eliminated wall flow on soil originally collected in plastic liners and is relatively easy to implement without the need for specialized tools. 
    more » « less